Managed Aquifer Recharge of Stormwater: A Harris County Pilot Study

Gretchen Miller, Ph.D., P.E.

Currently: Collier Consulting Previously: Texas A&M University

Project Team

TEXAS A&M GRILIFE

Pilot site located in Tomball, Texas detention basin

Tested three enhanced infiltration methods

Infiltration Trenches

Proprietary System

Geotech investigations found sandy loam at surface, interbedded sands and clays at depth

CFCD 92	219			RE HCFCD.GDT 6/28/19		LOG O	= B(ORIN	IG	B-	1 PAGE 1 OF 1	DA	TE				11/2010
			15	55 Clay Road, Suite 100 ouston, Texas 77043	PROJEC	T: Drainage Reuse Initia Harris County, Texas	ative	(DRI)	- H0	CFC	D Basin M525-01	SU	RFA	CE EL	EVA	TION	11/2019 50.5
Ph: (713) 690-8989 Fax: (713) 690-8787					PROJECT NO.: 92195264 BORING TYPE: Dry to 25'							(%)	ATTERBERG LIMITS(%)			(%)	F aRKS
				LOCATION		● BLOW COUNT● 20 40 60 80	(bod)	EAR	N (%)		Natural Moisture Content and	CONTENT		⊨	INDEX	SIEVE	GLE OI TTON (& REM
DEPTH (ft.) SAMPLES		usc	R LEVEL	Northing: 13952088 Easting: 3035631	FIELD STRENGTH DATA	▲ C ₀ (tsf) ▲ 1.0 2.0 3.0 4.0 ■ SS (tsf) ■	DRY DENSITY (UNDRAINED SHEAR STRENGTH (Ist)	FAILURE STRAIN	NING URE (psi	Atterberg Limits Plastic Moisture Liquid Limit Content Limit	URE CON	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	PASSING #200 SIEVE	ESTIMATED ANGLE OF INTERNAL FRICTION $\langle^{\rm A}\rangle$ OTHER TESTS & REMARKS
SAMPLES			WATE	MATERIAL DESCRIPTION	FIELD STREN DATA	1.0 2.0 3.0 4.0 ◆ Torvane (psf) ◆ 200 400 600 800	DRYD	UNDR/ STREN	FAILUF	CONFINING PRESSURE (►+ 20 40 60 80	MOISTURE	3	PL	P	PASSII	ESTIM INTERI OTHEF
°₹		CL		SANDY LEAN CLAY (CL), medium stiff to very stiff, slight plasticity, light gray and tan, moist, with ferrous stains	N=7 P=4.5	•						13	24	14	10	66	
5 -7		CL		LEAN CLAY WITH SAND (CL), very stiff,	P=2.75												
Ī				high plasticity, dark gray and tan, moist	P=4.0	•											
10 \$					P=4.5 P=4.5							17	40	16	24	75	
ł	7				P=3.5	-					•	17					
15 🕹					P=4.0	-											
4	1	сн		FAT CLAY WITH SAND (CH), very stiff, very high plasticity, light gray and tan, moist	P=3.0 P=4.5						·····	26					
20 4 1 25 4					P=4.5												
Water Level Est:						reviations: T Data (Blows/Ft) ket Penetrometer (tsf) vane (psf)		ing ter			at 25 feet. o piezometer after drilling (f	Refe	r to f	Exhib	it A-	17).	
		key:		÷	C., - Uni	varie (psi) drained Shear Strength (tsf) imated Shear Strength (P/2, tsf)										· .	Exhibit A-3

Experimental Design – General Layout

Experimental Design – Soil Amendment

Experimental Design - Trenches

Experimental Design – Proprietary System

Experimental Design – Outflow Control

Monitored site from Jan '20 to Dec '21

Cellular Data Logger with Cloud Storage

Water Level, Electrical Conductivity, **Temperature Sensor**

Station

Drain Gauge Passive Capillary Lysimeter

Soil Moisture, Electrical Conductivity, Temperature Sensor

Test Plots – Equipment Layout

ENSO cycle impacted weather during study

One full inundation event and four partial events occurred

May 17/May 25, 2021

October 1, 2021

Images from day before peak

5/25 – Control

5/25 – Soil Amendment

Infiltration - Modes of Action

Each treatment type responds differently to rainfall

- Trenches flashy large storage
- Soil amendment sustained modest storage
- Proprietary system spikes in storage at depth

Response of soil moisture to rainfall shows different mechanisms of action

Control shows quick responses to rain in shallow soil, dampened in deep soil

Trenches store water and release over next day, draining quickly

Trenches - 20 cm

Soil amendment acts like a sponge at surface, drains over time

Proprietary system shows distinct soil moisture patterns, faster spikes

Proprietary - 20 cm

But no groundwater <25' depth, and no infiltration measured by drain gauges...

Infiltration - Long-term Results

Increased infiltration from treatment plots

- Strongest evidence from drain gauge lysimeters
- Supporting evidence from groundwater and soil moisture

Trenches have highest infiltration rates over long-term

High degree of variability depending on location of infiltration measurement

24

Groundwater fluctuations indicate that treatments enhance recharge

Initial flush of salt from trenches later stabilizes higher than background

26

Recycled concrete aggregate in trenches appears to be the culprit

Recycled concrete aggregate in trenches appears to be the culprit

No long-term deterioration of underlying groundwater beyond salinity

29

Infiltration - Inundation Events

Disappointing performance of treatments

- Rainfall and partial events during winter kept water levels high under trenches and amendment
- Performance of these remained fairly steady
- Substantially higher infiltration in control plot

May inundation event lasted 10+ days

Control plot shows superior infiltration during event

Antecedent conditions explain lower "storage capacity" during events

Longer detention times translate to more infiltration from basin

General Conclusions & Recommendations

- To achieve year-round groundwater recharge aims:
 - Trenches lead to best infiltration quantity
 - Soil amendments improve infiltration quality
- To improve flood control, stormwater quality:
 - Consider longer detention times
 - Other basin modifications may not be necessary
- To protect groundwater quality:
 - Select materials and site carefully

Questions?

Gretchen Miller, Ph.D., P.E.

Collier Consulting Geoscience and Engineering Round Rock, Texas gmiller@collierconsulting.com